

POTENTIAL OF LTE FOR MACHINE-TO-MACHINE COMMUNICATION

Dr. Joachim Sachs Ericsson Research

OUTLINE

- > Trend towards M2M communication
- > What is the role of cellular communication
- > 5G the next generation of cellular communication
- > Cellular M2M communication
 - Sensors and meters
 - Intelligent Transport Systems (ITS)
 - Distributed embedded control
- Conclusion

TELECOMMUNICATION TODAY

Source: Ericsson

Joachim Sachs | Tokyo University - Global Design Symposium: Future LTE and network optimization for M2M support | © Ericsson AB 2013 | 2013-11-28 | Page 3 (42)

TELECOMMUNICATION TODAY

Joachim Sachs | Tokyo University - Global Design Symposium: Future LTE and network optimization for M2M support | © Ericsson AB 2013 | 2013-11-28 | Page 4 (42)

TELECOMMUNICATION TOMORROW

Joachim Sachs | Tokyo University - Global Design Symposium: Future LTE and network optimization for M2M support | © Ericsson AB 2013 | 2013-11-28 | Page 5 (42)

THE NETWORKED SOCIETY

Joachim Sachs | Tokyo University - Global Design Symposium: Future LTE and network optimization for M2M support | © Ericsson AB 2013 | 2013-11-28 | Page 6 (42)

CONNECTED DEVICES

Meters and Sensors

- Sensor, actuators, meters, connected devices and things
- > Small, simple, low-cost
- > Low energy consumption
- › Long-range coverage

Intelligent Transport Systems

- Connecting vehicles, transport infrastructure and transport management
- Incl. safety-related services
- > Low delay
- High mobility

Critical Communication

- Distributed embedded control & cyber-physical systems
- High reliability and availability
- > Low delay
- › Autonomous operation

Role of cellular communication

Capabilities to fulfill demanding requirements, not limited to personal communication

WIRELESS ACCESS GENERATIONS

2G

The foundation of mobile broadband

3**G**

The future of mobile broadband

The Networked Society

5G

Unlimited access to information and sharing of data available anywhere and anytime to anyone and anything

KEY CHALLENGES ON 5G

Wide range of Requirements & Characteristics

- Data rates
- Latency
- Reliability/availability
- Device cost and energy consumption
- Security
- •

Affordable and sustainable

DATA RATES FOR 5G

Higher rata rates has been the "flying flag" for each technology step!

Target for the future

- > 10 Gbps in specific scenarios
- > 100 Mbps generally available in urban/suburban scenarios
- > High-quality (Mbps) connectivity essentially everywhere

LATENCY / RELIABILITY FOR 5G

LTE radio-interface latency sufficient in most cases

Very low latency may be required by some "new applications"

Smart grid

Industrial application

"Tactile Internet"

Target for the future

Possibility for sub-ms latency with very high reliability

FUTURE WIRELESS ACCESS - 5G

A set of integrated radio-access technologies jointly enabling the long-term Networked Society

- > Evolution of existing radio-access technologies
- > New *complementary* radio-access technologies

METIS PROJECT

Joachim Sachs | Tokyo University - Global Design Symposium: Future LTE and network optimization for M2M support | © Ericsson AB 2013 | 2013-11-28 | Page 14 (42)

CONNECTED DEVICES

Meters and Sensors

- Sensor, actuators, meters, connected devices and things
- > Small, simple, low-cost
- > Low energy consumption
- › Long-range coverage

Intelligent Transport Systems

- Connecting vehicles, transport infrastructure and transport management
- Incl. safety-related services
- > Low delay
- High mobility

Critical Communication

- Distributed embedded control & cyber-physical systems
- High reliability and availability
- > Low delay
- › Autonomous operation

CONNECTED DEVICES

Meters and Sensors

- Sensor, actuators, meters, connected devices and things
- > Small, simple, low-cost
- Low energy consumption
- Long-range coverage

Intelligent Transport Systems

- Connecting vehicles, transport infrastructure and transport management
- Incl. safety-related services
- > Low delay
- > High mobility

Critical Communication

- Distributed embedded control & cyber-physical systems
- High reliability and availability
- > Low delay
- > Autonomous operation

SENSORS & METERS USE CASES

- > Building automation (temperature, light, doors, heating, ...)
- > Ambient Assisted Living personal monitor (blood pressure, pulse, ...)
- > Sensors and **smart meters** in the smart grid (e.g. distributed weather sensors)
- Goods / fleet tracking in logistics
- > Agriculture / aquaculture sensors (irrigation, fertilization, cattle tracking, ...)
- > Smart city infrastructure monitoring (availability of parking lots, full dustbins, ...)

SENSORS & METERS CHARACTERISTICS

- > Typically infrequent measurements of limited size
- > Traffic mainly in uplink (measurement reports), but downlink also possible (configuration, SW update, control)
- Delay-tolerant in downlink and / or uplink
- > Stationary or mobile devices
- > Long lasting battery operation or with power supply
- > Constrained (cost/processing) or complex devices
- > Potentially dense accumulation of many devices

- > Typically infrequent measurements of limited size
- > Traffic mainly in **uplink** (measurement reports), but **downlink** also possible (configuration, SW update, control)
- > Delay-tolerant in downlink and / or uplink
- > Stationary or mobile devices
- > Long lasting battery operation or with power supply
- > Constrained (cost/processing) or complex devices
- > Potentially dense accumulation of **many** devices

REQUIREMENT #1: LOW COST

Example LTE

- > Cost reduction of up to 80% possible
 - (3GPP TR 36.888) by reduced UE features and performance
- > 3GPP Rel-12 WI targeting 50% cost reduction
 - one receive antenna
 - data rates limited to 1 Mb/s
 - data transmission in 1.4 MHz only
- > Beyond Rel-12 features e.g.
 - half-duplex FDD, reduced RF bandwidth

Low-end UE category 1

Downlink

- up to 10 Mb/s (64 QAM)
- up to 10296 bits transport block size
- 2 receiver antennas and reception from
 - up to 4 antenna ports
- single stream transmission

Uplink

- up to 5 Mb/s (16 QAM)
- up to 5160 bits transport block size
- two transmit antennas

Layer 2 buffer size 150 kB

Source: 3GPP TS 36.306 and Dahlman et al. 2011

REQUIREMENT #2: EXTENDED COVERAGE

Example LTE

- > 3GPP TR 36.888 lists coverage improvement options for low-rate MTC devices
 - repetition with energy accumulation
 - power/PSD boosting
 - relaxed performance requirements
 - simplification/elimination of physical control channel functionality or design of new channels/signals

- 3GPP Rel-12 work item targeting 15dB coverage extensions for MTC UEs
- More aggressive improvement imaginable beyond Rel-12

MTC – Machine-type communication

REQUIREMENT #3: LOW ENERGY CONSUMPTION

Operate devices for years on a single battery

WHAT CONSUMES ENERGY IN LTE?

DRX active times dominate UE energy consumption

LTE: LOW-ENERGY UE TRANSMISSION

Assumptions

No downlink transmission

Uplink transmission

- 1000 bytes every 12 min
- 10 ms synchronization
- 50 ms data transmission

DRX active periods

- 10 ms synchronization
- 10 ms reading control channel

Source: Tirronen et al. 2012 & 2013

LTE: LOW-ENERGY UE TRANSMISSION (2)

- > Currently maximum DRX (&paging) cycles of 2.56 s
- > Longer DRX can reduce UE energy consumption
- > Energy saving vs. delay trade-off for downlink data
 - Long DRX cycle reduce the UE responsiveness to network triggers
 e.g. with 2.56 s DRX cycle a UE can respond on average within 1.28 s
 - If UE is delay tolerant for downlink data, long DRX cycles can be used
- > In uplink a UE can transmit whenever it desires
 - no delay impact

REQUIREMENT #4: LITTLE OVERHEAD FOR SMALL DATA

- > Can we simplify the transmission procedures for small data transmission?
 - Connection / bearer setup and tear-down for every data transfer

REQUIREMENT #4: LITTLE OVERHEAD FOR SMALL DATA

- > Investigation on optimizations is currently ongoing in 3GPP
 - E.g. keep UE in RRC_CONNECTED state with long sleep (DRX) cycles
 - E.g. simplified bearer handling and lightweight connection setup

5G RESEARCH METIS - MASSIVE MACHINE COMMUNICATION

- > Different test cases on massive machine communication:
 - Shopping mall (dense sensor deployment)
 - Massive deployment of sensors and actuators
- MTC scalability and performance
 - supporting 10-100 times more devices
 - > 80% protocol efficiency for 300 000 devices per access point
 - efficient random access, protocol overhead
 - 10 times better battery lifetime
 - > improved UE sleep modes
 - -99.9% coverage
 - > long-range coverage features

CONNECTED DEVICES

Meters and Sensors

- Sensor, actuators, meters, connected devices and things
- > Small, simple, low-cost
- Low energy consumption
- › Long-range coverage

Intelligent Transport Systems

- Connecting vehicles, transport infrastructure and transport management
- Incl. safety-related services
- > Low delay
- High mobility

Critical Communication

- Distributed embedded control & cyber-physical systems
- High reliability and availability
- > Low delay
- > Autonomous operation

INTELLIGENT TRANSPORT SYSTEMS EARLIER RESEARCH

- Mobile networking for ITS has been demonstrated
- ETSI ITS has endorsed cellular networks as communication technology for Cooperative Intelligent Transport Systems

- > Cooperative Cars (CoCar, 2006-2009)
 - Basic research on cellular car-to-car communication using UMTS and HSPA
 - -Reference case: Road Hazard Warnings

DAIMLER

- Cooperative Cars eXtended CoCarX (CoCarX, 2009-2011)
 - -LTE, session and lifecycle management, heterogeneous approach

ETSI STANDARDIZATION

- > C-ITS Cooperative Intelligent Transport Systems
 - Goals, e.g.:
 - > Improved traffic efficiency
 - > Increased road safety
- > Automotive Messaging Types
 - CAM Cooperative Awareness Message
 - > Continuous notification for ambient awareness
 - DEN Decentralized Environmental Notification
 - Event based notifications

Intersection assistance

CELLULAR CAR-TO-CAR DELAY

CELLULAR CAR-TO-CAR DELAY

HOW ABOUT SYSTEM CAPACITY?

Evaluated in simulation study

ITS SUMMARY

- > CAM could in theory be supported by LTE networks
 - High traffic load and radio resource usage for little new information
- > DEN can efficiently be supported by LTE networks
 - Warning essential to increase road safety
 - Delay requirements can be met
- > Possible capacity improvements
 - Solution using Multimedia Broadcast Multicast Service or Device-to-Device communication
- > Other vehicular communication use cases have more relaxed requirements
 - Remote diagnostics, road traffic management, ...

M. Phan, R. Rembarz, S. Sories: 'A Capacity Analysis for the Transmission of Event and Cooperative Awareness Messages in LTE Networks', ITS World Congress, Orlando, Florida, October 2011.

INTELLIGENT TRANSPORT SYSTEMS **CURRENT RESEARCH**

Converge (2012-2015)

- > Concepts and prototypes of
 - -data and content exchange network (for ITS safety & efficiency data)
 - a multi-operator & multi-technology wireless access solution

5G / METIS (2012-2015)

- > Test Case: "Traffic Safety and Efficiency"
 - -road platooning (vehicle-2-vehicle)
 - -traffic safety, including pedestrians & cyclists (vehicle-2-vehicle, vehicle-2-infrastructure, vehicle-2-device)
 - -integration of wide-area connectivity with D2D and DSRC
 - guaranteed e2e delay of 5ms
 - -transmission reliability of 99.999%
 - -relative velocities up to 500 km/h

Driver:

CONNECTED DEVICES

Meters and Sensors

- Sensor, actuators, meters, connected devices and things
- > Small, simple, low-cost
- > Low energy consumption
- › Long-range coverage

Intelligent Transport Systems

- Connecting vehicles, transport infrastructure and transport management
- Incl. safety-related services
- > Low delay
- > High mobility

Critical Communication

- Distributed embedded control & cyber-physical systems
- High reliability and availability
- > Low delay
- › Autonomous operation

5G LATENCY / RELIABILITY

New MTC use cases drive 5G to address demanding requirements

Very low latency may be required by some "new applications"

Smart grid

Industrial application

"Tactile Internet"

Target for the future

Possibility for sub-ms latency with very high reliability

5G RESEARCH METIS - ULTRA-RELIABLE COMMUNICATION

- > Super real-time with guaranteed ultra-low delays
- > Reliable connections
- Relevant for industrial automation and distributed embedded control
- > Test case: Teleprotection in smart grid network
 - based on IEC 61850 substation automation
 - guaranteed 8ms one-way, end-to-end delay
 - 99.999% service availability

PR: Protective Relay IED: Intelligent Electronic Device ETH: Ethernet

SUMMARY

- Machine-to-machine communication is a major part in enabling the Network Society
- > Cellular communication will play a strong role
 - Capabilities, availability, global market
- Optimization of cellular communication is possible for M2M
 - Several activities ongoing in 3GPP
- > 5G addresses novel and demanding use cases (e.g. in METIS)

REFERENCES

- > METIS, "Scenarios, requirements and KPIs for 5G mobile and wireless system", project deliverable D1.1, April 2013, https://www.metis2020.com/
- > T. Tirronen, A. Larmo, J. Sachs, B. Lindoff, N. Wiberg, "Machine-to-machine communication with long-term evolution with reduced device energy consumption", Trans Emerging Tel Tech, 2013
- > Erik Dahlman, Stefan Parkvall, Johan Sköld, "4G LTE/LTE-Advanced for Mobile Broadband," Academic Press, 2011
- > T. Tirronen, A. Larmo, J. Sachs, B. Lindoff, N. Wiberg, "Reducing energy consumption of LTE devices for machine-to-machine communication," IEEE Globecom 2012
- D. Astely, E. Dahlman, G. Fodor, S. Parkvall, J. Sachs, "LTE Release 12 and Beyond," IEEE Communications Magazine, July 2013
- J. Sachs, "Automotive Communication via Mobile Broadband Networks", ITG Zukunft der Netze, 2011.
- M. Phan, R. Rembarz, S. Sories: 'A Capacity Analysis for the Transmission of Event and Cooperative Awareness Messages in LTE Networks', ITS World Congress 2011, Orlando, Florida, October 2011
- 3GPP TR 36.888, "Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE"
- 3GPP Rel-12 Work Item, "Low cost & enhanced coverage MTC UE for LTE", http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_60/Docs/RP-130848.zip
- > 3GPP TR 23.887, "Architectural Enhancements for Machine Type and other mobile data applications Communications"
- G. Jodlauk, R. Rembarz, Z. Xu: 'An Optimized Grid-Based Geocasting Method for Cellular Mobile Networks', to appear at ITS World Congress 2011, Orlando, Florida, October 2011.
- M. Phan, R. Rembarz, S. Sories: 'A Capacity Analysis for the Transmission of Event and Cooperative Awareness Messages in LTE Networks', to appear at ITS World Congress 2011, Orlando, Florida, October 2011.
- > Ericsson, "5G Radio Access", white paper, June 2013, http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf

